Tuesday, 24 January 2017

Data Mining Introduction

Data Mining Introduction

Introduction

We have been "manually" extracting data in relation to the patterns they form for many years but as the volume of data and the varied sources from which we obtain it grow a more automatic approach is required.

The cause and solution to this increase in data to be processed has been because the increasing power of computer technology has increased data collection and storage. Direct hands-on data analysis has increasingly been supplemented, or even replaced entirely, by indirect, automatic data processing. Data mining is the process uncovering hidden data patterns and has been used by businesses, scientists and governments for years to produce market research reports. A primary use for data mining is to analyse patterns of behaviour.

It can be easily be divided into stages

Pre-processing

Once the objective for the data that has been deemed to be useful and able to be interpreted is known, a target data set has to be assembled. Logically data mining can only discover data patterns that already exist in the collected data, therefore the target dataset must be able to contain these patterns but small enough to be able to succeed in its objective within an acceptable time frame.

The target set then has to be cleansed. This removes sources that have noise and missing data.

The clean data is then reduced into feature vectors,(a summarized version of the raw data source) at a rate of one vector per source. The feature vectors are then split into two sets, a "training set" and a "test set". The training set is used to "train" the data mining algorithm(s), while the test set is used to verify the accuracy of any patterns found.

Data mining

Data mining commonly involves four classes of task:

Classification - Arranges the data into predefined groups. For example email could be classified as legitimate or spam.
Clustering - Arranges data in groups defined by algorithms that attempt to group similar items together
Regression - Attempts to find a function which models the data with the least error.
Association rule learning - Searches for relationships between variables. Often used in supermarkets to work out what products are frequently bought together. This information can then be used for marketing purposes.

Validation of Results

The final stage is to verify that the patterns produced by the data mining algorithms occur in the wider data set as not all patterns found by the data mining algorithms are necessarily valid.

If the patterns do not meet the required standards, then the preprocessing and data mining stages have to be re-evaluated. When the patterns meet the required standards then these patterns can be turned into knowledge.

Source : http://ezinearticles.com/?Data-Mining-Introduction&id=2731583

Wednesday, 11 January 2017

Searching the Web Using Text Mining and Data Mining

Searching the Web Using Text Mining and Data Mining

There are many types of financial analysis tools that are useful for various purposes. Most of these are easily available online. Two such tools of software for financial analysis include the text mining and data mining. Both methods have been discussed in details in the following section.

The features of Text Mining It is a way by which information of high-quality can be derived from a text. It involves giving structure to the input text then deriving patterns within the data that has been structured. Finally, the process of evaluating and interpreting the output is undertaken.

This form of mining usually involves the process of structuring the text input, and deriving patterns within the structured data, and finally evaluating and interpreting the data. It differs from the way we are familiar with in searching the web. The goal of this method is to find unknown information. It can be done with analyses in topics that that were not researched before.

What is Data Mining? It is the process of the extraction of patterns from the data. Nowadays, it has become very vital to transform this data into information. It is particularly used in marketing practices as well as fraud detection and surveillance. We can extract hidden information from huge databases of information. It can be used to predict future trends as well as to aid the company business to make knowledgeable quick decisions.

Working of data mining: Modeling technique is used to perform the operation of such form of mining. For these techniques, you must need to be fully integrated with a data warehouse as well as financial analysis tools. Some of the areas where this method is used are:

 - Pharmaceutical companies which need to analyze its sales force and to achieve their targets.
 - Credit card companies and transportation companies with sales force.
 - Also large consumer goods companies use such mining techniques.
 - With this method, a retailer may utilize POS or point-of-sale data of customer purchases in order to develop  strategies for sale promotion.

The major elements of Data mining:

1. Extracting, transforming, and sending load transaction data on the data warehouse of the server system.

2. Storing and managing the data in for database systems that are multidimensional in nature.

3. Presenting data to the IT professionals and business analysts for processing.

4. Presenting the data to the application software for analyses.

5. Presentation of the data in dynamic ways like graph or table.

The main point of difference between the two types of mining is that text mining checks the patterns from natural text instead of databases where the data is structured.

Data mining software supports the entire process of such mining and discovery of knowledge. These are available on the internet. Data mining software serves as one of the best financial analysis tools. You can avail of data mining software suites and their reviews freely over the internet and easily compare between them.

Source:http://ezinearticles.com/?Searching-the-Web-Using-Text-Mining-and-Data-Mining&id=5299621

Monday, 2 January 2017

Data Mining

Data Mining

Data mining is the retrieving of hidden information from data using algorithms. Data mining helps to extract useful information from great masses of data, which can be used for making practical interpretations for business decision-making. It is basically a technical and mathematical process that involves the use of software and specially designed programs. Data mining is thus also known as Knowledge Discovery in Databases (KDD) since it involves searching for implicit information in large databases. The main kinds of data mining software are: clustering and segmentation software, statistical analysis software, text analysis, mining and information retrieval software and visualization software.

Data mining is gaining a lot of importance because of its vast applicability. It is being used increasingly in business applications for understanding and then predicting valuable information, like customer buying behavior and buying trends, profiles of customers, industry analysis, etc. It is basically an extension of some statistical methods like regression. However, the use of some advanced technologies makes it a decision making tool as well. Some advanced data mining tools can perform database integration, automated model scoring, exporting models to other applications, business templates, incorporating financial information, computing target columns, and more.

Some of the main applications of data mining are in direct marketing, e-commerce, customer relationship management, healthcare, the oil and gas industry, scientific tests, genetics, telecommunications, financial services and utilities. The different kinds of data are: text mining, web mining, social networks data mining, relational databases, pictorial data mining, audio data mining and video data mining.

Some of the most popular data mining tools are: decision trees, information gain, probability, probability density functions, Gaussians, maximum likelihood estimation, Gaussian Baves classification, cross-validation, neural networks, instance-based learning /case-based/ memory-based/non-parametric, regression algorithms, Bayesian networks, Gaussian mixture models, K-Means and hierarchical clustering, Markov models, support vector machines, game tree search and alpha-beta search algorithms, game theory, artificial intelligence, A-star heuristic search, HillClimbing, simulated annealing and genetic algorithms.

Some popular data mining software includes: Connexor Machines, Copernic Summarizer, Corpora, DocMINER, DolphinSearch, dtSearch, DS Dataset, Enkata, Entrieva, Files Search Assistant, FreeText Software Technologies, Intellexer, Insightful InFact, Inxight, ISYS:desktop, Klarity (part of Intology tools), Leximancer, Lextek Onix Toolkit, Lextek Profiling Engine, Megaputer Text Analyst, Monarch, Recommind MindServer, SAS Text Miner, SPSS LexiQuest, SPSS Text Mining for Clementine, Temis-Group, TeSSI®, Textalyser, TextPipe Pro, TextQuest, Readware, Quenza, VantagePoint, VisualText(TM), by TextAI, Wordstat. There is also free software and shareware such as INTEXT, S-EM (Spy-EM), and Vivisimo/Clusty.

Source : http://ezinearticles.com/?Data-Mining&id=196652